Bioremediation of benzene, ethylbenzene, and xylenes in groundwater under iron-amended, sulfate-reducing conditions.

نویسندگان

  • Song Jin
  • Paul H Fallgren
  • A Azra Bilgin
  • Jeffrey M Morris
  • Paul W Barnes
چکیده

Elevated concentrations of sulfide in groundwater (approximately 63 mg S(2-)/L in water and 500 mg dissolved H2S/L dissipating from the wellhead) at a field site near South Lovedale (OK, USA) were inhibiting the activity of sulfate-reducing bacteria (SRB) that are known to degrade contaminants, including benzene, toluene, ethylbenzene, and xylenes. Elevated concentrations of these contaminants, except for toluene, also were present in this groundwater. Microcosms were established in the laboratory using groundwater and sediment collected from the field site and amended with various nutrient, substrate, and inhibitor treatments. All microcosms initially were amended with FeCl2 to induce FeS precipitation and, thereby, to reduce aqueous sulfide concentrations. Complete removal of benzene, ethylbenzene, and m+p-xylenes (BEX; o-xylene not detected) was observed within 39 d in treatments with various combinations of nutrient and substrate amendments, including treatments with no amendments (other than FeCl2). This indicates that the elevated concentration of sulfide is the only limiting factor to BEX biodegradation at this site under anaerobic conditions and that treating the groundwater with FeCl2 may be a simple remedy to both facilitate and enhance BEX degradation by the indigenous SRB population.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions.

Toluene and the three isomers of xylene were completely mineralized to CO2 and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was gasoline-contaminated sediment from Seal Beach, Calif. Evidence confirming that sulfate was the terminal electron acceptor is presented. Benzene and ethylbenzene were not degraded under the experimental condi...

متن کامل

Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1.

The soil fungus Cladophialophora sp. strain T1 (= ATCC MYA-2335) was capable of growth on a model water-soluble fraction of gasoline that contained all six BTEX components (benzene, toluene, ethylbenzene, and the xylene isomers). Benzene was not metabolized, but the alkylated benzenes (toluene, ethylbenzene, and xylenes) were degraded by a combination of assimilation and cometabolism. Toluene a...

متن کامل

Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures.

Monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene (BTEX) are widespread contaminants in groundwater. We examined the anaerobic degradation of BTEX compounds with amorphous ferric oxide as electron acceptor. Successful enrichment cultures were obtained for all BTEX substrates both in the presence and absence of AQDS (9,10-anthraquinone-2,6-disulfonic acid). The electro...

متن کامل

Detection of benzene, toluene, ethyl benzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions.

We have developed a simple, whole-cell bioassay for the detection of bioavailable benzene, toluene, ethyl benzene, and xylenes (BTEX) and similar compounds. A genetically engineered E. coli strain expressing toluene dioxygenase (TDO) and toluene dihydrodiol dehydrogenase (TodD) was constructed, enabling the conversion of BTEX into their respective catechols, which were quickly converted into co...

متن کامل

Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns.

Methanogenic flowthrough aquifer columns were used to investigate the potential of bioaugmentation to enhance anaerobic benzene-toluene-ethylbenzene-xylene (BTEX) degradation in groundwater contaminated with ethanol-blended gasoline. Two different methanogenic consortia (enriched with benzene or toluene and o-xylene) were used as inocula. Toluene was the only hydrocarbon degraded within 3 years...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental toxicology and chemistry

دوره 26 2  شماره 

صفحات  -

تاریخ انتشار 2007